ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 65941

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Сфера, описанная около тетраэдра ]
[ Теорема косинусов ]
[ Формула Эйлера ]
Сложность: 4
Классы: 10,11

Пусть I – центр сферы, вписанной в тетраэдр ABCD, A', B', C', D' – центры описанных сфер тетраэдров IBCD, ICDA, IDBA, IABC соответственно.
Докажите, что описанная сфера тетраэдра ABCD целиком лежит внутри описанной сферы тетраэдра A'B'C'D'.

Прислать комментарий     Решение

Задача 110124

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Касательные к сферам ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 10,11

Дан тетраэдр ABCD. Вписанная в него сфера σ касается грани ABC в точке T. Сфера σ' касается грани ABC в точке T' и продолжений граней ABD, BCD, CAD. Докажите, что прямые AT и AT' симметричны относительно биссектрисы угла BAC.

Прислать комментарий     Решение

Задача 109556

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Ортоцентр и ортотреугольник ]
[ Правильный тетраэдр ]
[ Признаки равенства прямоугольных треугольников ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5-
Классы: 10,11

Высоты AA1, BB1, CC1 и DD1 тетраэдра ABCD пересекаются в центре H сферы, вписанной в тетраэдр A1B1C1D1.
Докажите, что тетраэдр ABCD – правильный.

Прислать комментарий     Решение

Задача 109643

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Развертка помогает решить задачу ]
[ Теорема о трех перпендикулярах ]
[ Правильный тетраэдр ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Замечательные точки и линии в треугольнике (прочее) ]
Сложность: 5-
Классы: 10,11

Сфера, вписанная в тетраэдр, касается одной из его граней в точке пересечения биссектрис, другой – в точке пересечения высот, третьей – в точке пересечения медиан. Докажите, что тетраэдр правильный.

Прислать комментарий     Решение

Задача 103941

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Применение проективных преобразований, сохраняющих сферу ]
Сложность: 5
Классы: 10,11

Сфера, вписанная в тетраэдр ABCD, касается его граней в точках A', B', C', D'. Отрезки AA' и BB' пересекаются, и точка их пересечения лежит на вписанной сфере. Доказать, что отрезки CC' и DD' тоже пересекаются на вписанной сфере.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .