ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 167]      



Задача 115502

Темы:   [ Сочетания и размещения ]
[ Доказательство от противного ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 4+
Классы: 7,8,9,10

Дана незамкнутая несамопересекающаяся ломаная из 37 звеньев. Через каждое звено провели прямую.
Какое наименьшее число различных прямых могло получиться?

Прислать комментарий     Решение

Задача 98184

Темы:   [ Сочетания и размещения ]
[ Подсчет двумя способами ]
[ Неравенство Коши ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 5-
Классы: 8,9,10

В ботаническом справочнике каждое растение характеризуется 100 признаками (каждый признак либо присутствует, либо отсутствует). Растения считаются непохожими, если они различаются не менее, чем по 51 признаку.
  а) Покажите, что в справочнике не может находиться больше 50 попарно непохожих растений.
  б) А может ли быть ровно 50?

Прислать комментарий     Решение

Задача 73673

Темы:   [ Сочетания и размещения ]
[ Индукция (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
[ Формула включения-исключения ]
[ Производная и кратные корни ]
[ Подсчет двумя способами ]
Сложность: 5
Классы: 9,10,11

m и n – натуральные числа,  m < n.  Докажите, что  

Прислать комментарий     Решение

Задача 78166

Темы:   [ Сочетания и размещения ]
[ Принцип крайнего ]
[ Подсчет двумя способами ]
[ Теория множеств (прочее) ]
Сложность: 5+
Классы: 10,11

В школе изучают 2n предметов. Все ученики учатся на 4 и 5. Никакие два ученика не учатся одинаково, ни про каких двух нельзя сказать, что один из них учится лучше другого. Доказать, что число учеников в школе не больше   .
(Мы считаем, что ученик p учится лучше ученика q, если у p оценки по всем предметам не ниже, чем у q, а по некоторым предметам – выше.)

Прислать комментарий     Решение

Задача 30325

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 2
Классы: 6,7

Сколькими способами можно сделать трёхцветный флаг с горизонтальными полосами одинаковой ширины, если имеется материя шести различных цветов?

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 167]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .