ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 77]      



Задача 109941

Темы:   [ Последовательности (прочее) ]
[ Системы алгебраических неравенств ]
[ Монотонность и ограниченность ]
Сложность: 5-
Классы: 9,10,11

Автор: Храмцов Д.

В последовательности натуральных чисел {an},  n = 1, 2, ...,  каждое натуральное число встречается хотя бы один раз, и для любых различных n и m выполнено неравенство     Докажите, что тогда  |an – n| < 2000000  для всех натуральных n.

Прислать комментарий     Решение

Задача 66150

Темы:   [ Последовательности (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Индукция (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10,11

Существует ли такая бесконечная возрастающая последовательность a1, a2, a3, ... натуральных чисел, что сумма любых двух различных членов последовательности взаимно проста с суммой любых трёх различных членов последовательности?

Прислать комментарий     Решение

Задача 67200

Тема:   [ Последовательности (прочее) ]
Сложность: 5
Классы: 10,11

Автор: Бутырин Б.

Назовём тройку чисел триплетом, если одно из них равно среднему арифметическому двух других. Дана бесконечная последовательность $(a_n)$, состоящая из натуральных чисел. Известно, что $a_1=a_2=1$ и при $n > 2$ число $a_n$ — минимальное натуральное число такое, что среди чисел $a_1,a_2,\ldots,a_n$ нет трёх, образующих триплет. Докажите, что $a_n\leqslant \frac{n^2+7}{8}$ для любого $n$.
Прислать комментарий     Решение


Задача 77948

Темы:   [ Последовательности (прочее) ]
[ Перебор случаев ]
Сложность: 5
Классы: 9,10

Дана последовательность целых чисел, построенная следующим образом: a1 — произвольное трёхзначное число, a2 — сумма квадратов его цифр, a3 — сумма квадратов цифр числа a2 и т.д. Докажите, что в последовательности a1, a2, a3, ...обязательно встретится либо 1, либо 4.
Прислать комментарий     Решение


Задача 78300

Темы:   [ Последовательности (прочее) ]
[ Процессы и операции ]
Сложность: 5
Классы: 10,11

Даны 2n конечных последовательностей из нулей и единиц, причём ни одна из них не является началом никакой другой. Доказать, что сумма длин этих последовательностей не меньше n . 2n.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .