ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дана такая возрастающая бесконечная последовательность натуральных чисел a1, ..., an, ..., что каждый её член является либо средним арифметическим, либо средним геометрическим двух соседних. Обязательно ли с некоторого момента эта последовательность становится либо арифметической, либо геометрической прогрессией? Докажите, что при любых натуральных 0 < k < m < n числа В каждой клетке квадрата 101×101, кроме центральной,
стоит один из двух знаков: "поворот" или "прямо". Машинка въезжает
извне в произвольную клетку на границе квадрата, после чего ездит
параллельно сторонам клеток, придерживаясь двух правил: |
Задача 78242
УсловиеНа шахматной доске выбраны две клетки одинакового цвета. РешениеЯсно, что если искомый путь ладьи существует при каком-то выборе отмеченных клеток, то он существует и при любом другом выборе, который получается из исходного перестановкой вертикалей или перестановкой горизонталей шахматной доски. Поэтому утверждение задачи достаточно доказать всего в двух случаях: если первая отмеченная клетка угловая, а вторая 1) соседняя с ней по стороне, 2) соседняя с ней по диагонали. Условие, что две клетки имеют одинаковый цвет – лишнее и никак не используется. В каждом из случаев 1) и 2) легко строится искомый путь ладьи. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке