ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дана такая возрастающая бесконечная последовательность натуральных чисел a1, ..., an, ..., что каждый её член является либо средним арифметическим, либо средним геометрическим двух соседних. Обязательно ли с некоторого момента эта последовательность становится либо арифметической, либо геометрической прогрессией? Докажите, что при любых натуральных 0 < k < m < n числа В каждой клетке квадрата 101×101, кроме центральной,
стоит один из двух знаков: "поворот" или "прямо". Машинка въезжает
извне в произвольную клетку на границе квадрата, после чего ездит
параллельно сторонам клеток, придерживаясь двух правил: |
Задача 79407
Условие
В квадрате ABCD находятся 5 точек. Доказать, что расстояние между какими-то
двумя из них не превосходит
РешениеПроведя через центр квадрата прямые, параллельные его сторонам, разрежем квадрат на 4 одинаковых квадрата. Какие-то 2 из 5 точек лежат в одном из этих квадратов, и расстояние между ними не превосходит длины диагонали этого квадрата. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке