ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 109092
Темы:    [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 2
Классы: 8,9
В корзину
Прислать комментарий

Условие

Точка A лежит в плоскости α , ортогональная проекция отрезка AB на эту плоскость равна 1, AB = 2 . Найдите расстояние от точки B до плоскости α .
Также доступны документы в формате TeX

Решение

Пусть B1 – ортогональная проекция точки B на плоскость α . Тогда BB1 – перпендикуляр к плоскости α , AB1 – ортогональная проекция отрезка AB на плоскость α , а расстояние от точки B до плоскости α равно длине отрезка BB1 . Прямая BB1 перпендикулярна плоскости α , поэтому треугольник ABB1 – прямоугольный. По теореме Пифагора

BB1 = = = .


Также доступны документы в формате TeX

Ответ

.
Также доступны документы в формате TeX

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 8157

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .