ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Подборка задач

Задача 1

Пусть b1, b2, ..., b7 – это целые числа a1, a2, ..., a7, взятые в некотором другом порядке. Докажите, что число  (a1b1)(a2b2)...(a7b7)  чётно.

Задача 2

Докажите неравенство для натуральных n:  

Задача 3

В колбе находится колония из n бактерий. В какой-то момент внутрь колбы попадает вирус. В первую минуту вирус уничтожает одну бактерию, и сразу же после этого и вирус, и оставшиеся бактерии делятся пополам. Во вторую минуту новые два вируса уничтожают две бактерии, а затем и вирусы, и оставшиеся бактерии снова делятся пополам, и т.д. Наступит ли такой момент времени, когда не останется ни одной бактерии?

Задача 4

25 дачников получили садовые участки. Каждый участок представляет собой квадрат 1×1, и все участки вместе составляют квадрат 5×5. Каждый дачник враждует не более, чем с тремя другими дачниками. Докажите, что можно распределить участки таким образом, чтобы участки враждующих дачников не были бы соседними (по стороне).

Задача 5

В классе каждый болтун дружит хотя бы с одним молчуном. При этом болтун молчит, если в кабинете находится нечетное число его друзей – молчунов. Докажите, что учитель может пригласить на факультатив не менее половины класса так, чтобы все болтуны молчали.


© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .