ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подборка задач

Задача 1

В окружность вписаны две равнобедренные трапеции с соответственно параллельными сторонами. Докажите, что диагональ одной из них равна диагонали другой трапеции.

Задача 2

Радиолампа имеет семь контактов, расположенных по кругу и включаемых в штепсель, имеющий семь отверстий. Можно ли так занумеровать контакты лампы и отверстия штепселя, чтобы при любом включении лампы хотя бы один контакт попал на свое место (то есть в отверстие с тем же номером)?

Задача 3

Известно, что в кадр фотоаппарата, расположенного в точке O, не могут попасть предметы A и B такие, что угол AOB больше 179o. На плоскости поставлено 1000 таких фотоаппаратов. Одновременно каждым фотоаппаратом делают по одному снимку. Доказать, что найдётся снимок, на котором сфотографировано не больше 998 фотоаппаратов.

Задача 4

Сколько сторон может иметь выпуклый многоугольник, все диагонали которого равны?

Задача 5

В центре квадрата находится полицейский, а в одной из его вершин – гангстер. Полицейский может бегать по всему квадрату, а гангстер – только по его сторонам. Известно, что отношение максимальной скорости полицейского и максимальной скорости гангстера равно:   а) 0,5;   б) 0,49;   в) 0,34;   г) ⅓.   Сможет ли полицейский может бежать так, что в какой-то момент окажется на одной стороне с гангстером?


© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .