ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Подборка задач

Задача 1

На волшебной яблоне выросли 15 бананов и 20 апельсинов. Одновременно разрешается срывать один или два плода. Если сорвать один из плодов вырастет такой же, если сорвать сразу два одинаковых плода – вырастет апельсин, а если два разных – вырастет банан.
  а) В каком порядке надо срывать плоды, чтобы на яблоне остался ровно один плод?
  б) Можете ли вы определить, какой это будет плод?
  в) Можно ли срывать плоды так, чтобы на яблоне ничего не осталось?

Задача 2

В квадрате со стороной 1 расположено 100 фигур, суммарная площадь которых больше 99. Докажите, что в квадрате найдется точка, принадлежащая всем этим фигурам.

Задача 3

Докажите, что в любой бесконечной десятичной дроби можно так переставить цифры, что полученная дробь станет рациональным числом.

Задача 4

Дан отрезок AB. Найдите геометрическое место вершин C остроугольных треугольников ABC.

Задача 5

На пол положили правильный треугольник ABC, выпиленный из фанеры. В пол вбили три гвоздя (по одному вплотную к каждой стороне треугольника) так, что треугольник невозможно повернуть, не отрывая от пола. Первый гвоздь делит сторону AB в отношении 1 : 3, считая от вершины A, второй делит сторону BC в отношении 2 : 1, считая от вершины B. В каком отношении делит сторону AC третий гвоздь?


© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .