ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Подборка задач

Задача 1

На плоскости нарисованы две окружности (см. рис.). Существует ли некоторая точка, лежащая вне каждой из этих окружностей, для которой любая прямая, проходящая через неё, пересекает хотя бы одну из окружностей?

Задача 2

Куб разбит двумя способами на тетраэдры с вершинами в вершинах данного куба.
Верно ли, что в обоих случаях количество тетраэдров одно и то же?

Задача 3

В некотором городе разрешаются только парные обмены квартир (если две семьи обмениваются квартирами, то в тот же день они не имеют права участвовать в другом обмене). Докажите, что любой сложный обмен квартирами можно осуществить за два дня.
(Предполагается, что при любых обменах каждая семья как до, так и после обмена занимает одну квартиру, и что семьи при этом сохраняются).

Задача 4

В дугу AB окружности вписана ломаная AMB из двух отрезков  (AM > MB).
Докажите, что основание перпендикуляра KH, опущенного из середины K дуги AB на отрезок AM, делит ломаную пополам.

Задача 5

На каждой стороне параллелограмма взято по точке. Площадь четырёхугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырёхугольника параллельна одной из сторон параллелограмма.


© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .