Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подборка задач

Задача 1

Зашифрование сообщения состоит в замене букв исходного текста на пары цифр в соответствии с некоторой (известной только отправителю и получателю) таблицей, в которой разным буквам алфавита соответствуют разные пары цифр. Криптографу дали задание восстановить зашифрованный текст. В каком случае ему будет легче выполнить задание: если известно, что первое слово второй строки – "термометр" или что первое слово третьей строки – "ремонт"?

Задача 2

Доказать, что разносторонний треугольник нельзя разрезать на два равных треугольника.

Задача 3

В хоккейном турнире принимают участие n команд. Каждая команда встречается с каждой по одному разу, при этом выигравшей команде присуждается 2 очка, сыгравшей вничью – 1, проигравшей – 0 очков. Какой максимальный разрыв в очках может быть между командами, занявшими соседние места?

Задача 4

В окружность S вписан шестиугольник ABCDEF. Докажите, что точки пересечения прямых AB и DE, BC и EF, CD и FA лежат на одной прямой.

Задача 5

Внутри правильного шестиугольника находится другой правильный шестиугольник с вдвое меньшей стороной.
Доказать, что центр большого шестиугольника лежит внутри малого шестиугольника.


© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .