|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Точки K и M лежат на сторонах AB и BC треугольника ABC, причём AK : BK = 3 : 2, BM : MC = 3 : 1. Через точку B проведена прямая l, параллельная AC. Прямая KM пересекает прямую l в точке P, а прямую AC в точке N. Найдите BP и CN, если AC = a. |
Задача 109666
УсловиеВ тетраэдр ABCD , длины всех ребер которого не более 100, можно поместить две непересекающиеся сферы диаметра 1. Докажите, что в него можно поместить одну сферу диаметра 1,01.РешениеРассмотрим множества M центров сфер диаметра 1, лежащих в данном тетраэдре T . Так как M – множество точек, удаленных от всех граней T не менее, чем на 1/2 , то M – это тетраэдр с гранями, параллельными граням тетраэдра T , т.е. M и T гомотетичны. Центры вписанных сфер обоих тетраэдров совпадают, поэтому коэффициент k гомотетии равенИсточники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|