|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На экране суперкомпьютера напечатано число $11\ldots 1$ ($900$ единиц). Каждую секунду суперкомпьютер заменяет его по следующему правилу. Число записывается в виде $\overline{AB}$, где $B$ состоит из двух его последних цифр, и заменяется на $2\cdot A + 8\cdot B$ (если $B$ начинается на нуль, то он при вычислении опускается). Например, $305$ заменяется на $2\cdot 3 + 8 \cdot 5 = 46$. Если на экране остаётся число, меньшее $100$, то процесс останавливается. Правда ли, что он остановится? |
Задача 103885
УсловиеВ распоряжении юного паркетчика имеется 10 одинаковых плиток, каждая из которых состоит из 4 квадратов и имеет форму буквы Г (все плитки ориентированы одинаково). Может ли он составить из них прямоугольник размером 5×8? (Плитки можно поворачивать, но нельзя переворачивать. Например, на рисунке изображено неверное решение: заштрихованная плитка неправильно ориентирована.)
ОтветДа, может (см. рисунок).
Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|