|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На доске написаны в порядке возрастания два натуральных числа x и y (x ≤ y). Петя записывает на бумажке x² (квадрат первого числа), а затем заменяет числа на доске числами x и y – x, записывая их в порядке возрастания. С новыми числами на доске он проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке? |
Задача 58320
УсловиеДокажите, что при инверсии с центром O окружность, проходящая через O, переходит в прямую, а окружность, не проходящая через O, — в окружность.РешениеСлучай, когда окружность S проходит через O, фактически был разобран в предыдущей задаче (и формально следует из нее, так как (M*)* = M). Предположим теперь, что точка O не принадлежит S. Пусть A и B — точки пересечения окружности S с прямой, проходящей через O и центр S, а M — произвольная точка S. Докажем, что образом S является окружность с диаметром A*B*. Для этого достаточно показать, чтоИсточники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|