|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Опишите все способы покрасить каждое натуральное число в один из трёх цветов так, чтобы выполнялось условие: если числа a, b и c (не обязательно различные) удовлетворяют условию 2000(a + b) = c, то они либо все одного цвета, либо трёх разных цветов. а) Даны две точки A, B и прямая l. Постройте окружность, проходящую через точки A, B и касающуюся прямой l. б) Даны две точки A и B и окружность S. Постройте окружность, проходящую через точки A и B и касающуюся окружности S. |
Задача 56863
УсловиеРадиус вписанной окружности треугольника равен 1, длины высот — целые числа. Докажите, что треугольник правильный.РешениеВ любом треугольнике высота больше диаметра вписанной окружности. Поэтому длины высот — целые числа, большие 2, т. е. все они не меньше 3. Пусть S — площадь треугольника, a — наибольшая его сторона, h — соответствующая высота.Предположим, что треугольник неправильный. Тогда его периметр P меньше 3a. Поэтому 3a > P = Pr = 2S = ha, т. е. h < 3. Получено противоречие. Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|