ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Разбойники Хапок и Глазок делят кучу из 100 монет. Хапок захватывает из кучи пригоршню монет, а Глазок, глядя на пригоршню, решает, кому из двоих она достается. Так продолжается, пока кто-то из них не получит девять пригоршней, после чего другой забирает все оставшиеся монеты (дележ может закончиться и тем, что монеты будут разделены прежде, чем кто-то получит девять пригоршней). Хапок может захватить в пригоршню сколько угодно монет. Какое наибольшее число монет он может гарантировать себе независимо от действий Глазка? |
Задача 88070
УсловиеИзвестно, что p > 3 и p – простое число. Решениеа) Рассмотрим числа p – 1, p, p + 1, p + 2. Из четырёх последовательных чисел одно обязательно делится на 4, но это не p и не p + 2 (оба эти числа нечётны). Значит, одно из чисел p + 1 или p – 1 будет делиться на 4. б) Например, при p = 13 оба эти числа на 5 не делятся. Ответа) Будет; б) не обязательно. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке