|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Числа 1, 2, 3, ..., N записываются в строчку в таком порядке, что если где-то (не на первом месте) записано число i, то где-то слева от него встретится хотя бы одно из чисел i + 1 и i – 1. Сколькими способами это можно сделать? Сумма пяти неотрицательных чисел равна единице. |
Задача 65002
УсловиеСуществует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан? РешениеЛюбой отрезок, соединяющий вершину треугольника с точкой на противоположной стороне, короче, по крайней мере, одной из двух других сторон. Поэтому любая медиана или биссектриса короче хотя бы одной из сторон и, тем самым, короче наибольшей стороны. Это же верно для высот. ОтветНе существует. Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|