|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Найдите все такие натуральные n, что при некоторых отличных от нуля действительных числах a, b, c, d многочлен (ax + b)1000 – (cx + d)1000 после раскрытия скобок и приведения всех подобных слагаемых имеет ровно n ненулевых коэффициентов. |
Задача 78714
УсловиеИз натуральных чисел составляются последовательности, в которых каждое последующее число больше квадрата предыдущего, а последнее число в последовательности равно 1969 (последовательности могут иметь разную длину). Доказать, что различных последовательностей такого вида меньше чем 1969.Решение Докажем индукцией по n, что при n ≥ 3 количество последовательностей, оканчивающихся на n, меньше n. (Для n = 1 и 2 количество таких последовательностей равно n.) Рассмотрим последовательность, оканчивающуюся на n, и отбросим её последний член. Для всех последовательностей, состоящих более, чем из одного члена n, получаем последовательности, оканчивающиеся на 1, 2, ...,
[ Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|