Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Из точки A, лежащей вне окружности, выходят лучи AB и AC, пересекающие эту окружность. Докажите, что величина угла BAC равна полуразности угловых величин дуг окружности, заключенных внутри этого угла.

б) Вершина угла BAC расположена внутри окружности. Докажите, что величина угла BAC равна полусумме угловых величин дуг окружности, заключенных внутри угла BAC и внутри угла, симметричного ему относительно вершины A.

   Решение

Задача 64972
Темы:    [ Осевая и скользящая симметрии (прочее) ]
[ ГМТ - прямая или отрезок ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

На плоскости отмечена точка M, не лежащая на осях координат. По оси ординат движется точка Q, а по оси абсцисс точка P так, что угол PMQ всегда остаётся прямым. Найдите геометрическое место точек N, симметричных M относительно PQ.


Решение

  Точки P, Q, M и начало координат O лежат на окружности с диаметром PQ. Значит, точка N тоже лежит на этой окружности и  ∠PON = ∠POM  (см. рис.). Таким образом, N лежит на прямой, симметричной OM относительно осей координат.

  С другой стороны, если N – произвольная точка этой прямой, а P, Q – точки пересечения осей координат с окружностью OMN, то
PMN = ∠PON = ∠POM = ∠PNM  и  ∠PMQ = ∠POQ = ∠PNQ = 90°,  поэтому точки M и N симметричны относительно PQ.


Ответ

Прямая, симметричная OM относительно осей координат.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2011
класс
Класс 8
задача
Номер 8.7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .