ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

У барона Мюнхгаузена есть 50 гирь. Веса этих гирь – различные натуральные числа, не превосходящие 100, а суммарный вес гирь – чётное число. Барон утверждает, что нельзя часть этих гирь положить на одну чашу весов, а остальные – на другую чашу так, чтобы весы оказались в равновесии. Могут ли эти слова барона быть правдой?

   Решение

Задача 102857
Тема:    [ Геометрическая прогрессия ]
Сложность: 3-
Классы: 7,8
В корзину
Прислать комментарий

Условие

Найти сумму 1 + 2002 + 20022 + ... + 2002n.

Решение

Преобразуем выражение S = 1 + 2002 + 20022 + ... + 2002n = 1 + 2002(S − 2002n). Решим это уравнение относительно S и получим .

Источники и прецеденты использования

кружок
Место проведения МЦНМО
класс
Класс 7
год
Год 2004/2005
занятие
Номер 25
задача
Номер 25.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .