|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Чук и Гек наряжали елку. Чтобы они не подрались, мама выделила каждому из них по одинаковому числу веточек и по одинаковому числу игрушек. Чук попробовал на каждую ветку повесить по одной игрушке, но ему не хватило для этого одной ветки. Гек попробовал на каждую ветку повесить по две игрушки, но одна ветка у него оказалась пустой. Как Вы думаете, сколько веток и сколько игрушек выделила мама сыновьям? |
Задача 66270
УсловиеДаны два треугольника ABC и A'B'C', имеющие общие описанную и вписанную окружности, и точка P, лежащая внутри обоих треугольников. РешениеКак показано в решении 2 задачи 66262 геометрическим местом точек с постоянной суммой ориентированных расстояний до сторон треугольника ABC является прямая, перпендикулярная прямой OI, где O, I – центры описанной и вписанной окружностей. При этом для точки I сумма расстояний до сторон обоих данных треугольников равна 3r, а для точки O – R + r (формула Карно, которая легко следует из задачи 57621), где R, r – радиусы описанной и вписанной окружностей. Поэтому суммы расстояний до сторон обоих треугольников равны для всех точек плоскости. ЗамечанияМожно показать, что утверждение задачи остается верным при замене треугольников вписанно-описанными многоугольниками с любым числом сторон. Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|