ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точку внутри треугольника назовём хорошей, если длины проходящих через неё чевиан обратно пропорциональны длинам соответствующих сторон. Найдите все треугольники, для которых число хороших точек – максимально возможное.

   Решение

Задача 115738
Темы:    [ Правильный (равносторонний) треугольник ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Пусть O – центр правильного треугольника ABC. Из произвольной точки P плоскости опустили перпендикуляры на стороны треугольника или их продолжения. Обозначим через M точку пересечения медиан треугольника с вершинами в основаниях этих перпендикуляров. Докажите, что M – середина отрезка PO.


Решение

  Как известно, если G – точка пересечения медиан некоторого треугольника XYZ, то для произвольной точки Р выполняется равенство:  
  Рассмотрим векторы a, b и c, начало каждого из которых расположено в точке Р, а конец – на основании перпендикуляра, опущенного из точки Р на соответствующую сторону треугольника ABC. Нам нужно доказать, что     то есть, что     Для доказательства рассмотрим еще шесть векторов, каждый из которых лежит на прямой, параллельной стороне треугольника и проходящей через точку Р.

  Начало каждого такого вектора расположено в точке Р, а конец – на одной из сторон треугольника. (На рисунке изображен случай, когда точка Р лежит внутри треугольника.) Через эти векторы легко выразить как векторы, соединяющие Р с вершинами, так и векторы с концами в основаниях перпендикуляров – поскольку параллельные линии разбивают треугольник на правильные треугольники и параллелограммы. Из рисунка видно, что указанное равенство выполняется.
  Легко убедиться в и том, что эти рассуждения проходят и в случае, когда точка Р расположена вне треугольника АВС.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2005
тур
задача
Номер 9

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .