|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что если один выпуклый многоугольник лежит внутри другого, то периметр внутреннего многоугольника не превосходит периметра внешнего. |
Задача 65002
УсловиеСуществует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан? РешениеЛюбой отрезок, соединяющий вершину треугольника с точкой на противоположной стороне, короче, по крайней мере, одной из двух других сторон. Поэтому любая медиана или биссектриса короче хотя бы одной из сторон и, тем самым, короче наибольшей стороны. Это же верно для высот. ОтветНе существует. Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|