ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан четырёхугольник ABCD, вписанный в окружность ω. Касательная к ω, проведённая через точку A, пересекает продолжение стороны BC за точку B в точке K, а касательная к ω, проведённая через точку B, пересекает продолжение стороны AD за точку A в точке M. Известно, что  AM = AD  и  BK = BC.  Докажите, что ABCD – трапеция.

   Решение

Задача 30465
Тема:    [ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

а) Имеется две кучки по 7 камней. За ход разрешается взять один камень из любой кучки или по камню из каждой кучки. Проигрывает тот, кто не может сделать ход.

б) Кроме ходов, допустимых в пункте а), разрешается перекладывать один камень из первой кучки во вторую. В остальном правила те же.


Решение

Пункты а) и б) можно переформулировать в терминах шахматной доски. В обоих пунктах выигрывает первый игрок.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 8
Название Игры
Тема Теория игр
задача
Номер 033

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .