|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На асфальте нарисована полоса $1\times10$ для игры в «классики». Из центра первого квадрата надо сделать 9 прыжков по центрам квадратов (иногда вперёд, иногда назад) так, чтобы побывать в каждом квадрате по одному разу и закончить маршрут в последнем квадрате. Аня и Варя обе прошли полосу, и каждый очередной прыжок Ани был на то же расстояние, что и очередной прыжок Вари. Обязательно ли они пропрыгали квадраты в одном и том же порядке? |
Задача 65237
УсловиеНатуральные числа a, x и y, большие 100, таковы, что y² – 1 = a²(x² – 1). Какое наименьшее значение может принимать дробь a/x? Решение Оценка. Первый способ. y² = a²x² – a² + 1 < (ax)², значит, y < ax. Но y и ax – целые числа, поэтому y ≤ ax – 1. Следовательно, Оценка достигается при x > 100, a = 2x, y = ax – 1 = 2x² – 1. Ответ2. Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|