|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На плоскости отмечены несколько (больше трёх) точек. Известно, что если выкинуть любую точку, то оставшиеся будут симметричны относительно какой-нибудь прямой. Верно ли, что все множество точек тоже симметрично относительно какой-нибудь прямой? |
Задача 30451
УсловиеДан прямоугольный параллелепипед размерами а) 4 × 4 × 4; б) 4 × 4 × 3; в) 4 × 3 × 3, составленный из единичных кубиков. За ход разрешается проткнуть спицей любой ряд, если в нем есть хотя бы один непроткнутый кубик. Проигрывает тот, кто не может сделать ход.Решениеа) и б) - выигрывает второй. Центральная симметрия. в) Выигрывает первый. Первым ходом он протыкает ряд, состоящий из центральных кубиков четырех слоев 3 × 3. Дальше - центральная симметрия.Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|