|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На листе бумаги синим карандашом нарисовали треугольник, а затем провели в нём красным карандашом медиану, биссектрису и высоту (возможно, не все из разных вершин), лежащие внутри треугольника. Получили разбиение треугольника на части. Мог ли среди этих частей оказаться равносторонний треугольник с красными сторонами? |
Задача 88170
УсловиеПереложите пирамиду из 10 кубиков (см. рисунок) так, чтобы её форма осталась прежней, но каждый кубик соприкасался только с новыми кубиками.ПодсказкаПодумайте, какие кубики можно поставить в центр пирамиды, какие — в вершины.РешениеЗаметим следующее: кубик, стоящий в центре, соприкасается с шестью кубиками; кубики, стоящие в вершинах, — с двумя; а кубики, стоящие на сторонах треугольника, — с четырьмя. Отсюда сразу можно заключить, что при новой перекладке кубик из центра может попасть только в вершину, а в центр, наоборот, — только из вершины. Для определённости, пусть в центр попадёт кубик 1, а кубик 5 — в верхнюю вершину. Тогда на место кубиков 2 и 3 могут лечь только кубики 7 и 10, поскольку остальные кубики уже соприкасались с кубиком 5 (рис. 1). В нижние вершины должны лечь кубики 2 и 3. Расположение остальных кубиков определим перебором. Окончательный вариант показан на рис. 2.ОтветСм. рисунок справа.Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|