ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Разбойники Хапок и Глазок делят кучу из 100 монет. Хапок захватывает из кучи пригоршню монет, а Глазок, глядя на пригоршню, решает, кому из двоих она достается. Так продолжается, пока кто-то из них не получит девять пригоршней, после чего другой забирает все оставшиеся монеты (дележ может закончиться и тем, что монеты будут разделены прежде, чем кто-то получит девять пригоршней). Хапок может захватить в пригоршню сколько угодно монет. Какое наибольшее число монет он может гарантировать себе независимо от действий Глазка? Пусть A', B', C' — образы точек A, B, C при
аффинном преобразовании L. Докажите, что если C делит
отрезок AB в отношении AC : CB = p : q, то C'
делит отрезок A'B' в том же отношении.
|
Задача 66898
УсловиеПусть $O$ – центр описанной окружности остроугольного треугольника $ABC$, точка $M$ – середина стороны $AC$. Прямая $BO$ пересекает высоты $AA_1$ и $CC_1$ в точках $H_a$ и $H_c$ соответственно. Описанные окружности треугольников $BH_aA$ и $BH_cC$ вторично пересекаются в точке $K$. Докажите, что $K$ лежит на прямой $BM$. Решение 1Пусть $BD$ – диаметр описанной окружности треугольника $ABC$. Поскольку $\angle ADB = \angle C$, имеем: $$\angle CAH_a = \angle CAA_1 = 90^\circ - \angle C = 90^\circ - \angle ADB = \angle ABH_a.$$ Следовательно, сторона $AC$ касается описанной окружности треугольника $BH_aA$. Аналогично она касается описанной окружности треугольника $BH_сС$. Как известно, радикальная ось $BK$ этих двух окружностей проходит через середину $M$ отрезка $AC$ их общей касательной. Решение 2Пусть $B'$ – точка, симметричная точке $B$ относительно точки $M$, а описанная окружность треугольника $ACB'$ пересекает медиану $BM$ в точке $K$. Тогда внешний угол $AKB'$ треугольника $AKB$ равен $\angle ACB' = \angle A$ (см. далее рисунок слева). Но и внешний угол $BH_aA_1$ треугольника $AH_aB$ равен $\angle BAA_1 + \angle ABO = 90^\circ - \angle B + 90^\circ - \angle C = \angle A$ (см. далее рисунок справа). Поэтому $\angle AKB = \angle AH_aB$, то есть точка $K$ лежит на описанной окружности треугольника $BH_aA$. Аналогично она лежит на описанной окружности треугольника $BH_сС$. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке