ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В углу шахматной доски размером m×n полей стоит ладья. Двое по очереди передвигают её по вертикали или по горизонтали на любое число полей; при этом не разрешается, чтобы ладья стала на поле или прошла через поле, на котором она уже побывала (или через которое уже проходила). Проигрывает тот, кому некуда ходить. Кто из играющих может обеспечить себе победу: начинающий или его партнер, и как ему следует играть? |
Задача 98387
УсловиеКвадрат разбит прямыми на 25 квадратиков-клеток. В некоторых клетках нарисована одна из диагоналей так, что никакие две диагонали не имеют общей точки (даже общего конца). Каково наибольшее возможное число нарисованных диагоналей? РешениеПример с 16 диагоналями см. на рисунке. Первый способ. Каждая диагональ имеет два конца, расположенных в узлах квадратной сетки. Всего таких узлов в квадрате 36. 12 из них расположены на границе внутреннего квадрата 3×3 (рис. слева), поэтому диагоналей с концами в этих узлах проведено не больше 12. Оставшиеся пять диагоналей могут располагаться только в центральной и четырёх угловых клетках. Значит, четыре узла, расположенные в вершинах квадрата, не являются концами проведённых диагоналей, то есть 17 диагоналей имеют не более 36 – 4 = 32 концов. Противоречие. Второй способ. В каждом прямоугольнике 5×2 проведено не больше 6 диагоналей: на его средней линии всего шесть узлов, а каждая диагональ имеет один из них своим концом. Значит, во всех горизонталях квадрата, кроме средней, проведено в сумме не более 12 диагоналей. Поэтому в средней горизонтали их не меньше, чем 17 – 12 = 5, то есть в каждой её клетке проведена диагональ. Ответ16 диагоналей. Замечания7 баллов Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке