ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

На круглой поляне радиуса R растут три круглые сосны одинакового диаметра. Центры их стволов находятся на расстоянии $ {\frac{R}{2}}$ от центра поляны в вершинах равностороннего треугольника. Два человека, выйдя одновременно из диаметрально противоположных точек поляны, обходят поляну по краю с одинаковой скоростью и в одном направлении и всё время не видят друг друга. Увидят ли друг друга три человека, если они так же будут обходить поляну, выйдя из точек, находящихся в вершинах вписанного в поляну правильного треугольника?

   Решение

Задача 58115
Темы:    [ Выпуклые многоугольники ]
[ Малые шевеления ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

Назовем выпуклый семиугольник особым, если три его диагонали пересекаются в одной точке. Докажите, что, слегка пошевелив одну из вершин особого семиугольника, можно получить неособый семиугольник.

Решение

Пусть P — точка пересечения диагоналей A1A4 и A2A5 выпуклого семиугольника A1...A7. Одна из диагоналей A3A7 и A3A6, для определенности диагональ A3A6, не проходит через точку P. Точек пересечения диагоналей шестиугольника A1...A6 конечное число, поэтому вблизи точки A7 можно выбрать такую точку A7', что прямые A1A7',..., A6A7' не проходят через эти точки, т. е. семиугольник A1...A7' неособый.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 22
Название Выпуклые и невыпуклые многоугольники
Тема Выпуклые и невыпуклые фигуры
параграф
Номер 1
Название Выпуклые многоугольники
Тема Выпуклые многоугольники
задача
Номер 22.005

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .