|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В ряд стоят 30 сапог: 15 левых и 15 правых. Докажите, что среди некоторых десяти подряд стоящих сапог левых и правых поровну. |
Задача 58273
УсловиеДокажите, что любые n точек на плоскости всегда можно накрыть несколькими непересекающимися кругами так, что сумма их диаметров меньше n и расстояние между любыми двумя из них больше 1.РешениеПостроим круги с центрами в данных точках радиуса a = 1/2 + 1/2n. Ясно, что пересекающиеся круги радиусов R1 и R2 можно заключить в круг радиуса не более R1 + R2. Будем так делать до тех пор, пока не получатся непересекающиеся круги. Все данные точки расположены на расстоянии не меньше a от границ этих кругов, поэтому их радиусы можно уменьшить на b < a, и при этом они по-прежнему будут покрывать все данные точки. Если кругов k штук, то сумма их диаметров не больше n . 2a - k . 2bИсточники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|