ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 102950
Тема:    [ Задачи на полный перебор ]
Сложность: 3+
Классы:
Название задачи: Булевы функции .
В корзину
Прислать комментарий

Условие

Булевой функцией называется функция, принимающая одно из логических значений TRUE или FALSE и зависящая от некоторого (быть может, нулевого) количества аргументов, каждый из которых также может принимать любое из значений TRUE или FALSE.

Любая булева функция однозначно задается своей таблицей истинности, в которой для каждого возможного набора значений аргументов указано значение функции. Например, x AND y – булева функция от двух аргументов. Ее таблица истинности выглядит так: 

Если договориться, что наборы значений аргументов в таблице располагаются в лексикографическом порядке, то функция AND однозначно задается третьим столбцом таблицы – строкой 0001. Аналогично, каждой булевой функции от k аргументов можно поставить в соответствие строку из нулей и единиц длины 2k.

Задан набор из N+1 булевой функции (f, f1, f2, ..., fN). Напишите программу, которая определяет, можно ли функцию f выразить через функции f1, f2, ..., fN, и если такие представления возможны, то находит кратчайшее по числу символов среди них.

Входные данные

В первой строке входного файла записано целое число N (1 ≤ N ≤ 9). Последующие N+1 строк содержат описания функций f, f1, f2, ..., fN соответственно. Каждая из функций описывается строкой символов так, как указано выше. Число аргументов у функции f будет не более двух, а у остальных функций – не более трех.

Выходные данные

Первая строка выходного файла должна содержать искомое символьное представление, либо строку «Impossible», если такого представления не
существует. После функции с нулевым числом аргументов скобки не ставятся. Если у функции f один аргумент, то он обозначается x, а если два, то они обозначаются x и y.

Пример входного файла

2
1
1010
0

Пример выходного файла

f1(f2,f2)

Решение

Скачать архив тестов и решений

Если у нас имеется некоторый набор функций, то мы можем подставлять одни функции в другие, получая тем самым новые функции. Например, из функций f1(x, y), f2(x, y) и f3(x, y) можно построить функцию f4(x, y) = f1(f2(y, x), f3(y, y)). Решение задачи заключается в том, чтобы подставлять функции друг в друга всевозможными способами.

Источники и прецеденты использования

книга
предмет информатика
Автор Беров В., Лапунов А., Матюхин В., Пономарев А.
Название Особенности национальных задач по информатике
Издательство Триада-С
Год издания 2000
глава
Номер 6
Название Задачи на разные темы
Задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .