ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 103803
Темы:    [ Математическая логика (прочее) ]
[ Числовые таблицы и их свойства ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 7
В корзину
Прислать комментарий

Условие

Три человека A, B, C пересчитали кучу шариков четырёх цветов (см. таблицу).

При этом каждый из них правильно различал какие-то два цвета, а два других мог путать: один путал красный и оранжевый, другой – оранжевый и жёлтый, а третий – жёлтый и зелёный. Результаты их подсчётов приведены в таблице. Сколько каких шариков было на самом деле?


Решение

Ошибиться при подсчёте красных шариков мог только один из них, а двое правильно сосчитали число красных шариков. Поэтому красных шариков
было 2. В подсчёте красных шариков ошибся C, значит, он путал красные с оранжевыми, а жёлтые и зелёные считал правильно. Получаем, что жёлтых – 8, а зелёных – 9. Все оставшиеся шарики – оранжевые. Общее число шариков все считали правильно – 23. Значит, оранжевых шариков было 4.


Ответ

Красных – 2, оранжевых – 4, жёлтых – 8, зелёных – 9.

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 1996
класс
1
Класс 6
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .