ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 103811
Темы:    [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Можно ли вычеркнуть из произведения  1!·2!·3!·...·100!  один из факториалов так, чтобы произведение оставшихся было квадратом целого числа?


Решение

1!·...·100! = (1!)²·2·(3!)²·4·...·(99!)²·100 = 250·(1!·3!·...·99!)²·50!.  Отсюда видно, что, вычеркнув 50!, мы получим квадрат числа  225·1!·3!·...·99!.


Ответ

Можно.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1995/1996
Номер 17
вариант
Вариант весенний тур, тренировочный вариант, 10-11 класс
Задача
Номер 3
олимпиада
Название Математический праздник
год
Год 1996
класс
1
Класс 7
задача
Номер 6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .