ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 103828
Темы:    [ Центральный угол. Длина дуги и длина окружности ]
[ Примеры и контрпримеры. Конструкции ]
[ Перебор случаев ]
Сложность: 2+
Классы: 5,6,7
В корзину
Прислать комментарий

Условие

На кольцевой дороге расположены четыре бензоколонки: A, B, C и D. Расстояние между A и B — 50 км, между A и C — 40 км, между C и D — 25 км, между D и A — 35 км (все расстояния измеряются вдоль кольцевой дороги в кратчайшую сторону).

а) Приведите пример расположения бензоколонок (с указанием расстояний между ними), удовлетворяющий условию задачи.

б) Найдите расстояние между B и C (укажите все возможности).


Подсказка

Выясните сначала, как расположены бензоколонки A, C и D.


Решение

В условии даны все три расстояния между A, C и D. Выясним сначала, как расположены эти три бензоколонки.

Бензоколонки A и C разбивают кольцевую дорогу на две дуги. Если бы бензоколонка D находилась на меньшей дуге, то сумма расстояний от A до D и от D до C была равна расстоянию от A до C. Но это не так.

Значит, бензоколонка D расположена на большей дуге, поэтому длина большей дуги между A и C равна AD + DC = 25 + 35 = 60 км. Следовательно, длина кольцевой дороги равна 60 км + AC = 100 км.

Так как BA = 50 км, то A и B диаметрально противоположны. Значит, расстояние от B до C равно 50 - 40 = 10 км (см. рисунок).


Ответ

а) См. рисунок; б) 10 км.

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 1998
класс
1
Класс 7
задача
Номер 3
олимпиада
Название Математический праздник
год
Год 1998
класс
1
Класс 6
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .