ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 103874
Темы:    [ Перебор случаев ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 6,7
В корзину
Прислать комментарий

Условие

Айрат выписал подряд все числа месяца: 123456789101112... и покрасил три дня (дни рождения своих друзей), никакие два из которых не идут подряд. Оказалось, что все непокрашенные участки состоят из одинакового количества цифр. Докажите, что первое число месяца покрашено.


Подсказка

Если наименьшее из покрашенных чисел двузначное, то первый из непокрашенных участков состоит из 9 + 2n, т. е. из нечётного числа цифр.


Решение

Всего выписано

Допустим, число 1 не покрашено. Если наименьшее из покрашенных чисел двузначное, то первый из непокрашенных участков состоит из нечётного числа цифр, а все остальные — из чётного числа цифр. Если же наименьшее из покрашенных чисел однозначное, то первый из непокрашенных участков состоит не более чем из 8 цифр. Но это слишком мало: покрашенных цифр в этом случае не более 5, непокрашенных — не более 8 . 4 = 32, итого — не более 37 цифр, а даже самый короткий месяц (февраль невисокосного года) даёт 47 цифр. В обоих случаях получили противоречие. Значит, число 1 должно быть покрашено.

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 2002
класс
1
Класс 6
задача
Номер 6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .