ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 104015
Темы:    [ Арифметика остатков (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Олег собрал мешочек монет. Саша пересчитал их, и оказалось, что если разделить все монеты на пять равных кучек, то останется две лишние монеты. А если на четыре равные кучки – останется одна лишняя монета. В то же время монетки можно разделить на три равные кучки. Какое наименьшее число монет могло быть у Олега?


Решение

Если добавить 3 монеты, полученное число монет будет делиться на 3, 4 и 5, то есть на 60.


Ответ

57 монет.

Источники и прецеденты использования

Кружок
Название ВМШ 57 школы
класс
Класс 7
год
Место проведения 57 школа
Год 2005/06
занятие
Номер 7
Тема Теория чисел. Делимость
Название Делимость
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .