ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 107859
Темы:    [ Принцип Дирихле (углы и длины) ]
[ Покрытия ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Автор: Агеев С.М.

Дорога протяженностью 1 км полностью освещена фонарями, причем каждый фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее количество фонарей может быть на дороге, если известно, что после выключения любого фонаря дорога будет освещена уже не полностью?

Решение

  Занумеруем фонари натуральными числами в порядке следования вдоль дороги. Если отрезки, освещенные n-м и (n + 2)-м фонарями, пересекаются (хотя бы по одной точке), то (n + 1)-й фонарь можно выключить. Следовательно, отрезки с различными нечетными номерами, не пересекаются. На отрезке длины 1000 м нельзя расположить больше 999 непересекающихся отрезков длины 1 м. Если бы фонарей было хотя бы 1999, то фонарей с нечетными номерами было бы не менее 1000. Значит, фонарей не больше 1998.

Расположим 1998 фонарей так, чтобы центры освещенных отрезков образовывали арифметическую прогрессию, первый член которой равен $ {\frac{1}{2}}$ м, а 1998-й равен 999$ {\frac{1}{2}}$ м. (Разность этой прогрессии равна $ {\frac{999}{1997}}$.) Расстояние между n-м и (n + 2)-м фонарем равно $ {\frac{1998}{1997}}$. Значит, между отрезками, освещенными этими фонарями, имеется зазор в $ {\frac{1}{1997}}$ м. Его освещает только (n + 1)-й фонарь. Поэтому никакой фонарь нельзя выключить.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 61
Год 1998
вариант
Класс 10
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .