ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 109185
Темы:    [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
[ Деление с остатком ]
Сложность: 3-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Доказать, что сумма цифр квадрата любого числа не может быть равна 1967.


Решение

Квадрат целого числа (как и сумма его цифр) даёт при делении на 3 остаток 0 или 1. А число 1967 при делении на 3 даёт остаток 2.

Источники и прецеденты использования

олимпиада
Название Белорусские республиканские математические олимпиады
олимпиада
Номер 17
Название 17-я Белорусская республиканская математическая олимпиада
Год 1967
неизвестно
Название Задача 8.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .