ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 110072
УсловиеМишень представляет собой треугольник, разбитый тремя семействами параллельных прямых на 100 равных правильных треугольничков с единичными сторонами. Снайпер стреляет по мишени. Он целится в треугольничек и попадает либо в него, либо в один из соседних с ним по стороне. Он видит результаты своей стрельбы и может выбирать, когда стрельбу заканчивать. Какое наибольшее число треугольничков он может с гарантией поразить ровно пять раз?РешениеПокажем, что стреляющий может добиться 25 призовых мишеней. Рассмотрим разбиение мишени на 25 треугольных кусков 2×2 , т.е. состоящие из четырех треугольников (см. рис.) . Тогда, стреляя в центр каждого из них до тех пор, пока в одном из четырех треугольников куска не накопится пять попаданий, он получит ровно 25 призовых мишеней. Покажем, что стрелок не может гарантировать себе большего количества. Действительно, при стрельбе в произвольный треугольничек какого-то куска стрелок может всегда попадать в центральный треугольничек этого куска. Тогда призовых мишеней будет не больше 25, так как в остальные он не попадет ни разу. Ответ25.00Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|