ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 110137
Темы:    [ НОД и НОК. Взаимная простота ]
[ Десятичная система счисления ]
[ Принцип крайнего (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Автор: Храмцов Д.

Докажите, что из любых шести четырёхзначных чисел, взаимно простых в совокупности, всегда можно выбрать пять чисел, также взаимно простых в совокупности.


Подсказка

См. решение задачи 110130.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2003
Этап
Вариант 4
Класс
Класс 9
задача
Номер 03.4.9.7

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .