ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 111359
Темы:    [ Числовые таблицы и их свойства ]
[ Арифметическая прогрессия ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.


Решение

Над (под) диагональю находится  29·14 = 406  чисел. Нетрудно проверить, что сумма 406 наибольших чисел таблицы (16, 17, ..., 29, взятые по 29 раз) ровно в три раза больше суммы 406 наименьших чисел (1, 2, ..., 14, взятые по 29 раз). Поэтому все числа на диагонали равны 15.


Ответ

15.

Замечания

5 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 29
Дата 2007/2008
вариант
Вариант осенний тур, тренировочный вариант, 8-9 класс
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .