ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 115401
Темы:    [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

В некоторых клетках доски 10×10 поставили k ладей, и затем отметили все клетки, которые бьёт хотя бы одна ладья (ладья бьёт и клетку, на которой стоит). При каком наибольшем k может оказаться, что после удаления с доски любой ладьи хотя бы одна отмеченная клетка окажется не под боем?


Решение

  Оценка. Рассмотрим расстановку k ладей, удовлетворяющую условию. Возможны два случая.
  1) В каждом столбце стоит хотя бы по одной ладье. Тогда вся доска находится под боем, и можно убрать ладью из любого столбца, в котором их хотя бы две. Значит, в этом случае в каждом столбце стоит ровно по одной ладье, и  k = 10.
  2) Есть пустая строка и пустой столбец. Тогда клетка на их пересечении не под боем. Заметим, что каждая ладья является единственной либо в своей строке, либо в своем столбце (иначе её можно убрать). Для каждой ладьи отметим эту строку или этот столбец. Если отмечены не более восьми столбцов и не более восьми строк, то всего ладей не больше  8 + 8 = 16.  Если же, для определенности, отмечены девять столбцов, то ладей всего девять (в каждом из девяти столбцов по одной, а в десятом столбце по предположению ладей нет).
  Итак, k ≤ 16.
  Пример для 16 ладей показан на рисунке.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2008-2009
Этап
Вариант 5
Класс
Класс 11
задача
Номер 06.4.11.6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .