ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 115501
Темы:    [ Задачи на максимум и минимум (прочее) ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

На окружности расставлены 2009 чисел, каждое из которых равно 1 или –1, причём не все числа одинаковые. Рассмотрим всевозможные десятки подряд стоящих чисел. Найдём произведения чисел в каждом десятке и сложим их. Какая наибольшая сумма может получиться?


Решение

См. решение задачи 116425 б).


Ответ

2005.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 73
Год 2010
класс
Класс 9
задача
Номер 2010.9.4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .