ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 116385
Темы:    [ Делимость чисел. Общие свойства ]
[ Теория алгоритмов (прочее) ]
Сложность: 3-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Саша пишет на доске последовательность натуральных чисел. Первое число  N > 1  написано заранее. Новые натуральные числа он получает так: вычитает из последнего записанного числа или прибавляет к нему любой его делитель, больший 1. При любом ли натуральном  N > 1  Саша сможет написать на доске в какой-то момент число 2011?


Решение

Первый способ. Прибавляя по N, получим 2011N. Отнимая по 2011, получим 2011.

Второй способ. Если N нечётно, прибавим N и получим чётное число. Прибавляя к нему или вычитая из него двойки, получим 4022. Отняв 2011, получим 2011.


Ответ

При любом.

Замечания

баллы: 3

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2011/2012
Номер 33
вариант
Вариант осенний тур, сложный вариант, 8-9 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .