ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 116576
Тема:    [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Автор: Жуков Г.

На плоскости даны шесть точек. Известно, что их можно разбить на две тройки так, что получатся два треугольника. Всегда ли можно разбить эти точки на две тройки так, чтобы получились два треугольника, которые не имеют друг с другом никаких общих точек (ни внутри, ни на границе)?


Решение

Контрпример: вершины и середины сторон произвольного треугольника.


Ответ

Не всегда.

Замечания

3 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2012/13
Номер 34
вариант
Вариант весенний тур, базовый вариант, 8-9 класс
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .