ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30375
Темы:    [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8
В корзину
Прислать комментарий

Условие

Докажите, что  n² + 1  не делится на 3 ни при каком натуральном n.


Решение

  Случай, когда n делится на 3, очевиден.
  Если же n не делится на 3, то на 3 делится число  n² – 1 = (n – 1)(n + 1),  поскольку одно из чисел  n – 1,  n + 1  делится на 3. Следовательно, в этом случае
n² + 1 ≡ 2 (mod 3).

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 4
Название Делимость и остатки
Тема Теория чисел. Делимость
задача
Номер 018
книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 10
Название Делимость-2
Тема Теория чисел. Делимость
задача
Номер 006

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .