ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30387
Темы:    [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

На какую цифру оканчивается число 777777?


Решение

72 ≡ – 1 (mod 10),  значит,  777777 ≡ (72)388·7 ≡ 7 (mod 10).


Ответ

На 7.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 4
Название Делимость и остатки
Тема Теория чисел. Делимость
задача
Номер 030

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .