ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30613
Темы:    [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
Сложность: 3-
Классы: 7,8
В корзину
Прислать комментарий

Условие

Последняя цифра квадрата натурального числа равна 6. Докажите, что его предпоследняя цифра нечётна.


Решение

Так как последняя цифра 6, то возводимое в квадрат число чётно. Раз оно является квадратом, то оно делится и на 4. Следовательно, число, составленное из двух его последних цифр, должно делиться на 4. Все требуемые двузначные числа легко выписать: 16, 36, 56, 76, 96.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 10
Название Делимость-2
Тема Теория чисел. Делимость
задача
Номер 027

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .