ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30687
Тема:    [ Сочетания и размещения ]
Сложность: 2
Классы: 6,7
В корзину
Прислать комментарий

Условие

а) Из класса, в котором учатся 30 человек, нужно выбрать двоих школьников для участия в математической олимпиаде. Сколькими способами это можно сделать?
б) Сколькими способами можно выбрать команду из трех школьников в том же классе?


Решение

  а) Первого ученика можно выбрать 30 способами, второго, независимо от выбора первого ученика, – 29 способами. При этом каждая пара учитывается дважды. Поэтому всего способов  30·29 : 2.

  б) Аналогично получаем 30·29·28 вариантов последовательного выбора трёх учеников. При этом каждая команда учтена  3! = 6  раз. Поэтому число способов выбрать команду равно  .


Ответ

а)    способами;   б)    способами.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 11
Название Комбинаторика-2
Тема Классическая комбинаторика
задача
Номер 1, 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .