ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30704
Темы:    [ Сочетания и размещения ]
[ Задачи с ограничениями ]
[ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8
В корзину
Прислать комментарий

Условие

Сколько существует шестизначных чисел, у которых по три чётных и нечётных цифры?


Решение

На первое место можно поставить любую из 9 ненулевых цифр. Из оставшихся 5 мест выберем два  (5·4 : 2 = 10  способов). На эти два места поставим цифры той же чётности, что и первая (5² способов), на остальные три места – цифры другой чётности (5³ способов). Итого,  9·10·55 способов.


Ответ

90·55 = 281250  чисел.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 11
Название Комбинаторика-2
Тема Классическая комбинаторика
задача
Номер 018

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .