ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 30771
УсловиеФишка ходит по квадратной доске, каждым своим ходом сдвигаясь либо на клетку вверх, либо на клетку вправо, либо по диагонали вниз-влево. Может ли она обойти всю доску, побывав на всех полях ровно по одному разу, и закончить на поле, соседнем справа от исходного?
РешениеСумма номеров строки и столбца при каждом ходе либо уменьшается на 2, либо увеличивается на 1. Значит, ее остаток по модулю 3 каждый раз увеличивается на 1. Так как всего ходов n2 - 1, а в конце сумма должна быть на 1 больше исходной, то мы получаем, что n2 - 2 должно делиться на 3, что невозможно. Следовательно, такого обхода нет. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке