ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30870
Тема:    [ Неравенство Коши ]
Сложность: 3+
Классы: 9,10
В корзину
Прислать комментарий

Условие

Докажите, что  x4 + y4 + 8 ≥ 8xy  при любых x и y.


Решение

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 16
Название Неравенства
Тема Алгебраические неравенства и системы неравенств
задача
Номер 027
книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 10
Название Неравенства
Тема Алгебраические неравенства и системы неравенств
параграф
Номер 1
Название Различные неравенства
Тема Алгебраические неравенства (прочее)
задача
Номер 10.010

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .