ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30925
Темы:    [ Алгебраические неравенства (прочее) ]
[ Перебор случаев ]
Сложность: 3
Классы: 6,7
В корзину
Прислать комментарий

Условие

x, y > 0.  Через S обозначим наименьшее из чисел x, 1/y,  y + 1/x.  Какое максимальное значение может принимать величина S?


Решение

Если     то и     Если     то     Если     то     Следовательно,     Равенство достигается при  


Ответ

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 16
Название Неравенства
Тема Алгебраические неравенства и системы неравенств
задача
Номер 082

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .